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Rarefied gas flow behavior is usually described by the Boltzmann equation, the 
Navier-Stokes system being valid when the gas is less rarefied. Slip boundary 
conditions for the Navier Stokes equations are derived in a rigorous and 
systematic way from the boundary condition at the kinetic level (Boltzmann 
equation). These slip conditions are explicitly written in terms of asymptotic 
behavior of some linear half-space problems. The validity of this analysis is 
established in the simple case of the Couette flow, for which it is proved that the 
right boundary conditions are obtained. 

KEY WORDS: Boltzmann equation; Knudsen layer; Navier-Stokes 
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1. I N T R O D U C T I O N  A N D  M A I N  RESULTS 

Studies of such phenomena  as flow past aircraft flying at high altitudes are 
relevant to rarefied gas dynamics. Investigation in this domain  is usually 
done using a distribution function F(x ,  4), density of particles at point  x 
with velocity 4, satisfying the Bol tzmann equation. (7'9'12"18'29) 

A physically impor tan t  parameter  of the flow is the Knudsen  number,  
which is the ratio of  the mean free path by a characteristic length. In the 
limiting case of  small Knudsen  number,  it is well known that problems 
may  be solved within the fluid dynamic  theory in which the unknowns  are 
p, u, T (the density, velocity, and temperature of the flow) satisfying the 
Navier -Stokes  system. The link between the kinetic description (Bol tzmann 
equat ion)  and this cont inuum limit is made by the C h a p m a n - E n s k o g  
expansion. This formal expansion is proved to be valid when the fluid fills 
the whole space and under some technical assumptions. (1'19) If  there are 

1 CMA, t~cole Normale Sup6rieure, F-75230 Paris, France. 
2 INRIA, Domaine de Voluceau B.P. 105, F-78153 Le Chesnay, France. 

829 

0022-4715/89/0200-0829506.00/0 �9 1989 Plenum Publishing Corporation 



830 Coron 

obstacles in the flow, some conditions on p, u, T are to be fixed at the 
boundary. When the Knudsen number is very small, the assumption that 
the fluid sticks to the bodies gives physically good boundary conditions: 
the velocity and the temperature near a wall are those of the wall. 
However, when the Knudsen number is not so small, one has to take 
into account slip boundary conditions. There has been much work on 
this topic and on the way to obtain numerically the best boundary 
conditions. (16'2~ The reason for the slip phenomenon is easy to 
explain: the Chapman-Enskog expansion generally does not satisfy the 
kinetic boundary condition and so is not valid in a region near the body, 
called the Knudsen layer, the thickness of which is of order of the mean 
free path. 

The aim of this paper is to obtain rigorously and in a systematic way 
the slip boundary conditions. These slip boundary conditions for the 
Navier-Stokes system are derived from the kinetic boundary condition (for 
example, the well-known Maxwell accommodation condition or more 
general ones; see ref. 7). The analysis is based on the study of the Knudsen 
layer, which is related to half-space problem. 

In the following sections, we show how to obtain the boundary 
conditions for the Navier-Stokes system by a linear half-space problem 
analysis. We then prove that in the particular case of the Couette flow (see 
Section 2) there exists a solution (p, u, T) of the Navier-Stokes system 
satisfying the obtained boundary conditions. Then, adding to the 
Chapman-Enskog expansion a Knudsen layer term X, we obtain a solution 
which satisfies at a certain order with respect to the Knudsen number the 
Boltzmann equation and the kinetic boundary condition [see properties 
(2.5.1-2.5.2)]. Let us emphasize that we do not prove here that there exists 
a solution to the Boltzman n problem. Such a result might be obtained by 
the method of Caflisch. (5) We do not compute numerically the coefficients 
which appear in the boundary conditions but we prove that they are 
related to the asymptotic behavior of half-space problems. An approximate 
variational method to compute these coefficients was proposed by Golse (14) 
and by Loyalka. (24) 

The following sections are organized as follows: 
In Section 2, we study the simple case of Couette flow, first with 

complete accommodation and then with the Maxwell accommodation 
boundary. This example is used to explain the method, to obtain simpler 
expressions, and to give explicit estimations. Properties (2.5.1-2.5.2) prove 
that the right boundary conditions are obtained by only a linear half-space 
problem analysis for the Knudsen layer. As in ref. 20, the Couette flow, 
though simpler, is carefully studied because it contains the most important 
effects of slip flows and derivation of slip boundary conditions. 
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In Section 3, we analyze the general case of the multidimensional 
problem. It is shown how the one-dimensional analysis is relevant to study- 
ing the Knudsen layer and to obtaining the slip boundary conditions, at 
least from a formal point of view. 

The last section is devoted to some remarks concerning extensions of 
this method and its possible limitations. 

2. S T A T I O N A R Y  C O U E T T E  F L O W  

2.1. I n t r o d u c t i o n  

We consider a stationary Couette flow between two plates positioned 
at x = 0 and at x = L and orthogonal to the x axis (see Fig. 1). We assume 
complete accommodation at the boundary. We obtain the following 
equations for the distribution of particles F~(x, ~) at point x and with 
velocity 4: 

1 
~OxF~--Q(F~,F~)=O, O<~x<<.L, 

3~ ~ R/F~(O, ~) --- ~ mu~, ~( ~), 

f ~tF~(x, ~) d~=O 

{ =(41, ~2, {3)eR 3 (2.1) 

~1 > 0 (2.2) 

~1 < 0 (2.3) 

(2.4) 

f •  f F,(x, ~) d4 dx = N (2.5) 

z=0 

Mu~ ,T1 

/ 

)- 
z 

Fig. 1. Couette flow. 
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Equation (2.1) is the one-dimensional stationary Boltzmann equation. 
The parameter e is the Knudsen number and Q(F~, F~) is the collision 
term. (7'9'I2'~8"29) We restrict ourselves to collision kernels for a hard-sphere 
gas satisfying the angular cutoff assumption as proposed by Grad (see 
ref. 10). We denote by M,l ,r  , the Maxwellian with temperature T~ and 
mean velocity u~, which are, respectively, the temperature and the velocity 
of the left plane (at x = 0). We assume that u~ is normal to the x axis. 
Similarly, we denote by M,2 ' T2 the Maxwellian corresponding to the right 
plate (at x = L) 

M~,, r~(~) = (2~RTi)3/2 exp 2 R ~  J (2.6) 

ui=(ui~,ui2, ui3) with U~l=0, i = 1 , 2  

Using Eq. (2.1) and the usual property of conservation for the collision 
term, we obtain 

Ox (~ ~,F~(x, ~) d~) =O (2.7) 

Then (2.2)--(2.4) are equivalent to a complete accommodation condition at 
the boundary. 

From (2.5), the total number of particles is equal to N. This condition 
is added to (2.1)-(2.4) in order to avoid the trivial solution F, = 0. For this 
purpose, it is purpose, it is also possible to consider (2.1)-(2.4) with a given 
coefficient el in (2.2). 

2.2. The Chapman-Enskog Expansion 

The link between the Boltzmann equation and the Navier-Stokes 
system is realized by the Chapman-Enskog expansion (t'9) 

Fee(X, ~)= M,~, T~(~)[p~- eh~(x, 4)] (2.8) 

where p~, u~, T~ depend on x and 

M,~, r~(~) = (2~RT,),/2 exp ( 2RT~ } (2.9) 

and h~(x, ~) is expressed in terms of Sonine polynomials AI(~) and Bi(~) 
by 

i = 3  

h~(x, r  ~ b(T~, Igl) Be(() O:,u~,+a(T,, I(I)Ax(g)(RT~)V= d~ log(T~) 
i = l  

(2.10) 
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where 

(RTJ/2 

1(1~-5 
A t ( ( )  = ( 1 -  

2 
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(2.11) 

(2.12) 

(2.13) 

a(T~, ](I) is given by 

-2Q(Mu~,r.,M.~,r~a(T~, I(i)AI(4))=AI(()Mu~,,r~. (2.14) 

and b(T~, I(I) is given by 

-2Q(M.,,T,,  M.,,Tb(T~, I(l)Bi(())=Bi(4)Mu~,r~ (2.15) 

The one-dimensional stationary Navier-Stokes system for p~, u., T~ is 

(~x(peUel) = 0 (2.16) 

O x(p~u2~ ) + c?~(p,RT~) = e~ x( 4 #( T,) O ~ue~ ) (2.17) 

c?~(p~u~u,~)=@x(#(T~) ~?xU~i), i=2 ,  3 (2.18) 

~x(p,u~a(~RT ~ + 1 2 7u~)) =e~3~(4#(T~) u~?~U~l + )o(T,) OxT,) (2.19) 

where the viscosity #(T~) and thermal conductivity 2(T~) are expressed in 
terms of a(T,, () and b(T~, 4) by 

r, exp( 2(r~) = ~ J o  ( rS-  5r6) a(T., (2.20) 

#(T~) = 15(2~)~/2 r6b(T,, r) exp - dr (2.21) 

We recall the result of ref. 1: let p~, u., T, satisfy the Navier-Stokes 
system (2.16)-(2.19); then there exists a function W(x, ~) such that 

Vxe [0, L], fO(g)W(x, )d =o for I//(~) = 1, ~1, ~2, ~3, [~l 2 

(2.22) 

and 

-2Q(p,Mu,.r~, W) = S, (2.23) 
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with 

S~(x, ~)= ~3~(M~,r h~) + Q(M,~,r~h,, M,~,r h~) 

[ RT~ 

+ ~ r ~' O~(#(T.)~3~u~i)} M.,,r~(x, ~) 
i=2,3 

J~-u,I-3RT~3R2T~ Ox(p(T~){~(O~u~I) +~(O~u~2) 2 1 

' t ) +~(O~u.~) ~ +2(To)~xT, M.~,~,(x,~) 

and so we obtain 

r e2W) 1 Q(FcE q- ~2W, FCE q- eZw) 
8 

=e2(~OxW+ 2Q(M~,.vh,, W)-eQ(W, W)) (2.24) 

Usually, the functions a(T, I~l), b(T, I~1) are expressed in terms of 
Sonine polynomials.(9'18) For simplicity, we keep only the first term of such 
an expansion (that is, we assume that these functions do not depend on Ill, 
this being rigorously the case for Maxwellian molecules). From a practical 
point of view, such an approximation gives very good results. (4~ In this 
case, (2.20) and (2.21) give 

2(T,)=~R2T, a(T~), 12(T~)=RT, b(T,) 

and (2.10) becomes 

h~(x,~)=i~3 I~(T~) ( 2 ) 
i=1 (RT,) 2 (~1--Uei)(~i--Uei) I~--Ue------~]3 61"i ~xU~i 

22(T~) I ~ -- u~I 2 -- 5 RT~ O x T ~ 
-t 5(RT~) 2 (~1-u,l) 2RT~ 

(2.25) 

In the following sections, we consider the case of inverse-power-law 
interaction between molecules. In this case and under the above 
approximation, # and 2 satisfy the following law (4'18): 

/2(T~) = C~(T~) ~ (2.26) 

2(T~) = C).(Ty (2.27) 
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where Cx and C~ are constants. In particular, the model for the collision 
cross section is the hard sphere model, c~ = 1/2. 

Roraark. The assumptions that a(T, I~1) and b(T, 1(1) do not depend 
on 1(I and therefore that the relations (2.26), (2.27) are satisfied are only 
made to get simpler expressions for the Chapman-Enskog expansion and 
the Navier-Stokes system. The results obtained in this paper can be 
generalized for more complex functions a(T, I~1), b(T, I(I). 

2.3. Derivation of the Slip Boundary Conditions for the 
Navier-Stokes Equations 

Now, we are going to derive the boundary conditions for Navier-  
Stokes. Indeed, the Chapman-Enskog expansion usually does not satisfy 
the boundary conditions (2.2)-(2.4). To take into account these boundary 
conditions, we add to FcE(x, 4) two kinetic boundary layer terms at x = 0 
and at x = L: 

Z1 , and Z2 G , 

(the scaling in x/e means that these two corrective terms are to be concen- 
trated at the boundary). When the Knudsen number tends to zero, we 
expect the velocity and the temperature jump at the wall to vanish (the 
proof of this result is given in Section 2.5). At the zeroth order in e, 
p~M,,,r  ~ is equal to p~(O)M,,,r I at x = 0 .  At the first order in e 

( _~_ ;= 3 t/ei(0) -- t/li 
M ~ Mua,rl 1 E ~-/~ - 

T~(O) - T 1 I~ -- Ul 12 -- 3RTI~ 
q T1 2RTI J (2.28) 

Similarly we shall prove that the gradient of the fluid quantities (p,, u~, T~) 
remains bounded as e tends to zero. We thus have, at the first order in ~, 

eM,~(o), r~(o)h~(0, �9 ) - = M u~, T 1 h,(0, �9 ) (2.29) 

From problem (2.1)-(2.4) we obtain 

~18~)h-- 2Q(M,,,TI, X1)=O, 0 ~ < x < ~  (2.30) 

(i~=3 U~i(O)__Uii 
;~(0, ~ )=  [Ul--p~(O)] M.,,T,(~)--p~(O)M.,,T, - ~  (~i--Uli) 

i 1 
r ,  14 - 3R7" '  

+ =FI 2RTI J 

+eM~,,r,h,(O, ~), 41 > 0  (2.31) 
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This linearized problem has been studied by Bardos et al. (2) and 
Cercignani. (~) They proved existence and uniqueness of a bounded solution 
with zero mass flux 

f 41Xl(x, 4) d4 = 0 (2.32) 

When x tends to infinity, this solution converges exponentially fast to 

( 42--L/12 43 -u1314 -Ul ' 2 -3RT1 . ) (2 .33 )  
mul,Tl(4) a A v b 2 - ~ l ~ A v b 3 ~ l ~  -~-C 2RT1 

where the coefficients a, b2, b3, c depend on p~(0), u~i(0), T~(0), 0xu~i(0 ), 
?xT~(O). The dependence with respect to u~, T~ is obtained by changing 4 
by ~ and x by (RT~)l/Zx, so that Mul.r~ is transformed in the absolute 
Maxwellian Mo (whose mean velocity is equal to zero and whose tem- 
perature is equal to 1/R) and the asymptotic limit on XI is unchanged (we 
have used the fact that uH = 0). We then compute the asymptotic limit of 
the solution of the problem 

r - 2Q(M0, Z) = 0 (2.34) 

Z(0, r = ~b(4), r  (2.35) 

f ~lZ( x, 4) d4 =0 (2.36) 

for various function ~b. 
We notice that if ~b is odd (respectively even) with respect to ~ ,  then 

the limit is also odd (respectively even). The fact that changing 42 by 43 in 
~b, and vice versa produces the same change in the asymptotic limit also 
reduces the number of asymptotic limits to compute for the above linear 
half-space problem. Moreover, if ~b is equal to Mo, 42Mo, ~3Mo, or 
�89 3)Mo, then the solution Z is constant and equal to ~b. 

Since X~ is a boundary layer term, Z~ tends to zero at infinity. This last 
condition is equivalent to some conditions on the unknown of the 
Navier-Stokes system at the boundary; for example, the mass flux of Xl 
must be zero. According to (2.4), F, also has zero mass flux. Thus, the mass 
flux of FcE is zero and from (2.8), (2.10) we obtain 

u~(0)- -0  (2.37) 

The fact that Z1 is a boundary layer term ensures the following 
boundary conditions: 

pAO)[u~i(O)-u~] = ~c~xu~(o ) ,  i = 2 ,  3 (2.38) 

p , (0 ) [T , (0 ) -  T~] =eC2O~u,I(O)+eC30~T~(O) (2.39) 
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(2.38) and (2.39) are, respectively, equivalent to bi = 0 for i =  2, 3 and c = 0 
in the limit at infinity of ZI given by (2.33). Moreover, the fact that the 
asymptotic limit of the solution XI of (2.30), (2.31) with no mass flux has 
no component on Mud.r1 gives another relation which determines the value 
o f  0~1, 

0~ 1 = f i e ( 0 )  "t- ~ ; C 4 ~ x U e I ( 0  ) --}- F, C5(~xTe.(O) 

C~, C=,..., C5 are constants depending on T1 and are given by 

(2.40) 

#(T1) /~(Tt) 22(T1) 
C 1 -  (RT1)1/2 Cl, C 2 -  R c:, C 3 -  5R(RTa)I/2 c3 (2.41) 

#(T~ ) 22(T 1 ) 
C4 = T  c4' C5 -- 5R(RT~)I/2 cs (2.42) 

ci, c2 ..... c5 are constants independent of T 1 and are given by the 
asymptotic limit of the solutions of (2.34)-(2.36) for the following functions 
~(~): 

for ~b(~)= (~1~2)M0(Q; lim Z(x, ~)=c1(2Mo(()  (2.43) 
x ~ o o  

= - - -  Mo({); lira )~(x, 4) = c4 + c2 Mo(~) 
x ~  

(2.44) 

( ? )  ( c3 '2 3) for r  - - t ~ l  5 Mo(~); lim Z(x, 4)= cs+ - -  ' Mo(r 
x ~ o o  

(2.45) 

We have thus obtained four scalar conditions ar x = 0, (2.37)-(2.39). 
Similar equations are derived at x = L. 
Equations (2.37)-(2.39) are the slip boundary conditions obtained by 

our analysis. Their expressions are similar to those written in refs. 16 and 
20. This section has established the link between the coefficients which 
appear in these slip boundary conditions and asymptotic limits of some 
linear half-space problems. 

2.4. Solut ion of  the Navier -Stokes System 

Property 2.4.1. For e small enough, there exists a solution p~, u~, 
T~ of the Navier-Stokes equations (2.16)-(2.19) with the boundary con- 
ditions (2.37)-(2.39) and such that the integral of the density p~ over 
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[0, L ]  is equal  to N. Moreover ,  the derivatives (at any  order )  of  the fluid 
quanti t ies  remain  un i formly  b o u n d e d  when  e tends to zero (see Figs. 2 
a nd  3) and  there exist cons tan t  Cst such that  

I T ~ ( 0 ) -  Tll ~< Cst .e, luei(O)-ulil ~ Cst .e, 

I Z~( t )  - Z2l ~< Cat.e, lu~,(Z)l ~< Cst .e, 

ProoL F r o m  (2.16) and  (2.37) we have  

p~(x) u~l(x)= 0, Vx e [0,  L ]  

Thus ,  the N a v i e r - S t o k e s  system becomes  

L/el -~-0 

p~RT~=ce 

~x(/~(T~) ~?xU,j = 0, i = 2 ,  3 

~x(,t(T,) ~xr~)=0 

In  (2.50), ce is a cons t an t  related to N. 

i = 2 , 3  (2.46) 

i = 2 , 3  (2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

VELOCITY: u~ 

18. 0 

~..f" 

3 . 3  

-3 .  3 

-i0. 0 .. 
, , , , I , , , , I , , , , 

0.0 Z. 3 0.7 I. 

X/L 

Fig. 2. Couette flow. Velocity: u12 = -10, u22 = 10. ( - - )  ~ = 0, (--.) ~ 50. 
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Fig. 3. 

50. 0 

35. 7 

23. 3 

10. 0 

TEMPEKATU.RE: 7', 

~ . 0  1~.3 0 . 7  L O  

X/L 

Couette flow. Temperature:  T1 = 10, T2 = 50. ( - - )  e = 0, (-. .) e # 0. 

The boundary conditions (2.38)-(2.39) become, at x = 0 ,  

u~(O) - u~ = eu( T~) - -  
(RT~) 1/~ 

C~ 
C3~u~i(0), i =  2, 3 (2.53) 

T,(0)- T1 2E 
Tt = eA(T~) 5c~(RTt)~/2 8xT,(O) (2.54) 

and at x = L, 

u~i(L) - u2, = - ~ g ( T 2 )  
(RT2)  u2 

CSxu~i(L ), i = 2, 3 (2.55) 
C~ 

T ~ ( L ) -  T2 2E 
Tz = -e2(T2) 5c~(RT2)1/2 t3xT,(L) (2.56) 

We assume that the constants E, C are positive (see the approximate 
Computation of these constants in ref. 14). Since the viscosity and the 
thermal conductivity satisfy (2.26)-(2.27), we get from (2.52) 

T~(x) = (a~x + b~) u(~+ 1) (2.57) 
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Finally, we want the Chapman-Enskog expansion to be an approximate 
solution of (2.5); thus, 

f pAx) dx = N 

and therefore the constant e~ in (2.50) satisfies 

I dx (2.58) 
c~=N RT~ 

For e=0 ,  (2.54) and (2.56)-(2.58) have a unique solution defined by the 
parameters 

T ~ + ' -  T~;+ 1 
ao - (2.59) 

L 

bo = T~ + 1 (2.60) 

~z N R T ~ + I - T ~ ;  +l 
Co = - -  - -  ( 2 . 6 1 )  

a + l  L T~ - T~ 

Using the implicit function theorem, the system (2.54), (2.56)-(2.58) has a 
unique solution for e small enough which is of class C ~ with respect to 
and, using (2.27), such that 

Oa, ~ +1 2EC a { T~ +1 T~ +1 
(~ =0)  - ~ 5NRL (T~ - T~) ~ ~1~12;" ~-~"-~ ",T/2 -[- "RT1 ) (2.62) 

_ _  T ~  + 1  
Ob, (e =0 )  = ~ + 1 2EC). (T~ - T~;) (2.63) 
Og o~ 5NR (RT1) 1/2 

Oc, (e = O) = 2EC~. ( T~ +1 T ;  +1 

a-7 5L \(R--~7~) ~/2+ {k-~7):/2J 

+ i 2EC;. ~ T~+I_- T~ ( T~ T; "~ 
5L ~ + 1  T 2 - T  , ~ = \(RT2)I/2 § (RT1),/2j (2.64) 

From (2.51) and ( 2 . 5 7 )  

u~i(x) = d~(a~x + bJ/(~+ 1) + e~i, i =  2, 3 (2.65) 

where d~i, e~i are constants whose values are computed from (2.53), (2.55). 
This concludes the proof of Property 2.4.1. 

The implicit function theorem was used because (2.58) is a nonlocal 
condition. Without this condition, the existence of a solution for the 
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Navier-Stokes system with the slip boundary conditions could be proved 
for any e using simple estimates and nonlinear theory. 

Note that in this case the Euler system is reduced to Eqs. (2.49)-(2.50) 
and so is not well posed (this is due to the fact that u~ is equal to 0). 

2.5. Justification of the Chapman-Enskog Expansion and the 
Boundary Conditions 

Let 

F(x, 4)=FcE(x,~)+e~W(x,~)+Z~(~,~)+Z2(-L-u-~f-,4) (2.66) 

We prove in this section that if p,, u,, T, satisfy the Navier-Stokes system 
(2.16)-(2.19) and the boundary conditions (2.37)-(2.39), then F(x, 4) given 
by (2.66) is an approximate solution of (2.1)-(2.5) [with e~ given by 
(2.40)]. 

2.5.1. Estimate for the Kinetic Boundary Layer Terms: 
X~, Xa. First recall the result of ref. 2. 

k e m m a  2.5.1. Let ~b be a function such that 

f (1 + Ill) Mo~(~.)(~b(4)) 2 d4 < +oo 

Then there exist a unique solution Z of (2.34)-(2.36) in L o~ (dx, L2((1 + 141 ) d~)) 
and a unique asymptotic limit Zoo = [a + b2 ~2 + b3 c3 -1- c([~] 2 _ 3)/2] M0 
such that 

f (1 + f~[) Mol(Z(x, ~) - Zoo) 2 dr ~ Ce -'~ f (1 + [41) Mol~ 2 d~ 

where C, 7 are positive constants. 
According to this lemma, let 21 satisfy (2.30), (2.31) with zero mass flux 

and cq given by (2.40). From we obtain (2.31), (2.46), and (2.47) 

fr (1-t-141)M",~TI ( z~(0 '4 ) )2d~fs t '~2  
1 > 0  

Moreover, the boundary conditions (2.37) (2.40) ensure that the limit of 
21 when x tends to infinity is zero, whence, according to Lemma 2.5.1, 

f (1 + 141)(Z~(x, 4)) 2M-~u,, rl d~<<-C1 e-~Ixe2 (2.67) 

822/5413-4-18 
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where C1 and 7~ are positive constants depending only on u~ and T1. We get a 
similar estimate for ;~2. 

2.5.2. E s t i m a t e  f o r  i/i/ an d  d,,W. Let us first recall two basic 
properties of the Boltzmann operator. ItSI 

Let M be a Maxwellian; then there exist two positive constants CM, C ~  
depending only on the density, velocity, and temperature of the Maxwellian 
M such that: 

(1) If f satisfies 

f 0(~) f ( r  d~ = 0 

then 

(2) 

for 0 ( { ) =  1, ~ ,  ~2, ~3, I{l 2 (2.68) 

CMf(I+I~[)M lf2d~<~fM-1Q(M,f)fd~ (2.69) 

For any functions f ,  g 

f (1 + ]~[) ~ M-~(Q(f g))2 de 

Using both properties, we obtain the following estimates for W and ~?x W. 

l_emma 2.5.2. There exist two constants Cw, C'w independent of e 
such that 

f M-'  W 2 d ~ C w  (2.71) 

f (1 + I~l) M~T(~3~W) 2 d~ ..~ Cw (2.72) 

Proof. Estimate for W. 
and property (2.69), we get 

Cst.p~f (1 + Ir162162 

E; I" E; ] 1 AA-1  ~ 2  de (1 

Multiplying (2.23) by M~!r ~ W using (2.22) 

M - 1  W 2 d~] I/2 +1~1) ~,~ (2.73) 

The constant Cst does not depend on e. By (2.70), we estimate Q(M,~,rh~, 
M,,,r~h~) in term of h r. Notice that 

Ox(Mu~'r~)=k. RT~ OxU~+ 
I~ - u~[ 2 - 3RT~ ) 

2RT~ gx log(T,) M,~, T~ (2.74) 
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Using Property 2.4.1, the derivatives at any order of the fluid quantities 
p~, u~, T~ remain bounded independently of e. Thus (2.71) is proved. 

Estimate for O~W. Differentiating (2.22), (2.23), we obtain 

2Q(p~M.~,r~, c?~ W) = -2Q(~? ~(p~M..r~), W) + c~S~ 

Vxe [0, L], f~(~)OxW(x,~)d4=O for 

(2.75) 

~(~) = 1, 4 , ,  ~, ~, I~1 ~ 

(2.76) 

Multiply (2.75) by MY~)T3 ~ W, using (2.69), 

Cst.p~ f (1 + [41) M~)T~(Ox W) 2 d4 

~< (1 + [4[)-IM,~T~[2Q(Ox(p~Mu,.T~), W)] z d~ 

E; 1 x (1 + 14l) M.~)r,(Ox W) 2 d4 

The proof of (2.72) is then obtained using the estimate for W and 
(2.70). 

2.5.3. Est imate in the  Slab: [ 0 , / ] .  Notice that the estimate for 
;/1 uses M,,,r~, that for Z2 uses M,2,r ~, and the estimates for W and 0x W 
use M,~, r~. In order to have a simple estimation of the approximate, we 
need a "single Maxwellian." Assume that T~ ~< 7"2, let T> T2, and let M be 
the Maxwellian of temperature T and mean velocity 0. Then there exist 
constants such that 

M.,,T,(4)<..C,M(4), Mu2,T2(4)<-..C2M(4), Muo, T,(4)<...C3M(4), V4, Vx 

From (2.67), (2.71), and (2.72) we thus have 

f (1 + [~[)[Zl(x, 4)]2M 1 d~<<. Cst.e2e -rlx (2.77) 

f (1  + 141) M -1W2 d4 <<. Cst (2.78) 

f (1 + [4]) M l(OxW)Zd4<,.Cst (2.79) 
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By the very definitions of F, h~, W, Z~, Z2 

~10~F- 1 Q(F, F) = G2(~ 1 a x W-- 2Q(M~, T~h~, W) -- aQ( W, W)) 
g 

2 
- - -  Q ( M . ~ , T ,  -- M ~ , T ~ ,  Z 1 ) -  2Q(M.~,T~h~,  Z l )  

- 2aQ(W, zl) --1Q(X1, z,) 
g 

2 
- -  Q(M.E,r~- M~2,r 2, Z2) - 2Q(Mu~.Th~, Zz) 

g 

- 2eQ(W, Z2)_1 Q(Z2, z2)__2 Q(Z1, Z2) 
g 

Using (2.67)-(2.70) and Lemma 2.5.2, 

(2.80) 

( l + f ~ l  -1 -1 ) M (Q(M.~,rh~, W))2d~<~Cst 

f(l+l~l) 1 M - I ( Q ( W , z , ) ) 2 d ~ < ~ C s t ' F .  2 

(1 + I~l) -1M-I(Q(z, ,  Z1)) 2 d~ 

<~ Cst. 82e-271x/~, VX ~ [0, L] 

(. 
j (1 + I~[)-IM-1KQ(xl, g2))2 d~ 

C s t  . g2e 2?lX/e e -  2?2(L x)/e, Vx e ]-0, L] 

f(l+l~l) 1M-,(Q(M,~.rh,  z1))2d~<~Cst.e2e 27~x/~ 

f ( l + l ~ l  1 -1 ) M (Q(Mu~,TE ~ M l  ~ ~ l ) ~ 2 d~ ~ C s t  ~ ( ~ @ C s t  ~ x ) 2~ 2e ~ 2~1x~ 

The same estimate holds for Z2. Evaluating the L2([0, L]) norm of these 
last terms and replacing in (2.80), we get the following property. 

Proper ty  2.5.1. There exists a constant Cst such that 

{ f~ f  (1 + 1~1) 'M- ' I~ l~xF-~Q(F,F) ]2d~dx}l /2< .Cs t . a  3/2 

(2.81) 
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2.5.4. Est imate at x = 0 ,  at x=L,  and for the Total  Number  
of Particles 

P r o p e r t y  2.5.2. There exist constants Cst independent of e such 
that the following estimates hold: 

f (l + l~l) M-~[F(O, r162 d~ <~ Cst.e 2 (2.82) 

[where ~ is given by (2.40)] and similarly at x = L 

f ~F(x,  ~) d~ = 0  (2.83) 

f :  f F( x, 4 ) d~ dx N Cst . e 2 <~ (2.84) 

Proof. At x--0,  the boundary layer term )~1 has been constructed to 
correct the Chapman-Enskog expansion in order to fit the boundary 
condition (2.2) where cq is given by (2.40). The contributions at x = 0  of 
the terms )~2 and W are from (2.67) (with Z2 instead of ZI) and (2.71) of 
order e2. This proves (2.82). 

From (2.49), we know that the total mass flux of p~Mu,,v~ is zero. In 
the same way, according to (2.22), (2.25), the total mass fluxes of W and 
Mu~,r,(~) h~(~) are also zero. But ZI and Z2 do not contribute to this total 
mass flux; (2.83) is thus proved. 

By the construction (2.58), the total number of particles of P,Muo, T, is 
N. Moreover, according to (2.25), the density of Mu,,r,(() h~(~) is equal to 
zero. In the same way, from (2.22), we know that W does not contribute to 
the density of particles. According to (2.67), 

and a similar estimate for )~2. Thus, (2.84) is proved. 
Properties (2.66), (2.67) prove that F is an approximate solution of 

(2.1)-(2.5). 

R e m a r k  2.5.1. The change of any coefficient (C1, C 2, C3) in the 
slip boundary conditions (2.38)-(2.39) induces an error in the fluid quan- 
tities Pc, u~, T, of order e. Estimations (2.81)-(2.84) prove that the error 
made in the resolution of the Navier-Stokes system by using, in the slip 
boundary conditions, the coefficients given by the above linear half-space 
analysis is of order less than e 3p. This shows that we have obtained good 
coefficients for the slip boundary conditions. 
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2.6. Noncomplete Accommodation 

In Sections 2.1-2.5, complete accommodation at the boundary was 
assumed. The results obtained are easily extended for more complex 
wall-surface interactions. Let us, for example, consider Maxwell accom- 
modation. Then (2.2) is replaced by 

Sa, sR/F~(O, 4)=filF~(O, R4)+(1-fll)~IM,t.T~(~), ~ t > 0  (2.85) 

The parameter fit is the Maxwell accommodation coefficient: fil is given in 
[0, 1 [ and R is defined by 

R(~1,42,~3) = ( - 4 t , ( 2 , ~ 3 )  

A similar equation holds at x =-L; (2.3) becomes 

3a26R/F~(L, ~)=fl2F~(L, R4)+ (1 -f12) ~2M~2,T2(~), 4t < 0  (2.86) 

Equations (2.1), (2.4), and (2.5) remain unchanged. 
The Chapman-Enskog expansion and the Navier-Stokes equations 

remain as in Section 2.2. 

2.7. Derivation of the Slip Boundary Conditions 

We add to FcE(X, 4) two kinetic boundary layer terms at x = 0 and at 
x = L, 

Z ~ and )~ 2 g , 

As in  Section2.3, from (2.1), (2.85), (2.86), and (2.4), we obtain the 
following problem for Z~: 

~10xZ1-- 2Q(Mul,Tl, Z1)=O, 0~<x<oO (2.87) 

Zl(0 ,  ~)  = f l l Z l ( 0 ,  R ~ )  -}- (1 --  i l l )  o~tMuI,T,(~) 
-- FcE(0, ~)+  fllFcE(0, R~), ~1 > 0  (2.88) 

This linearized problem has been studied by Corone t  al. (1~ and the results 
are very similar to the problem with incoming flux. We still want )~1 to go 
to zero when x--* + m; this condition is equivalent to certain equalities on 
the Chapman-Enskog expansion at x = 0. To have the ul, T1 dependence 
of these conditions, we change ~ in ( [see (2.11)] and obtain 
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~, 0.)~ - 2Q(Mo, Z) - 0 (2.89) 

~(0, {) = flx;~(0, Re) + ~b(~), 31 > 0  (2.90) 

f ~lZ(X, ~_) d r  0 (2.91) 

for various functions ~. 
We notice that if ~b is odd (respectively even) with respect to 42, then 

the limit also is odd (respectively even). Moreover, if ~b is equal to M0, 
~2Mo, ~3Mo, 1 2 or ~(1~1 - 3)Mo, then the solution X is constant and equal to 
[1/(1-/31)]~b. Since Xl, like F~, has zero mass flux, we obtain 

u~ t(0) = 0 (2.92) 

and 7~1 tends to zero at infinity if and only if the following boundary 
conditions hold: 

p~(O) u~(O) = eCl~xu~(O), i=  2, 3 (2.93) 

p~(0)[ T~(0) - T1 ] = eCz~0xU~l(0) + eC2#Ox T~(O) (2.94) 

Moreover, as in Section 2.3, we obtain a relation which gives a~, 

,~ = p~(0) + eC4~c3~U~l(0) + ~C5~:, T,(O) (2.95) 

CI~, C2~ ..... C~  are constants depending on T1, /3 =/31: 

#(Tl) (1 +/31)CLB, C1~ = (RT1)a /2  

22(T~) (1 -{-/31)C3fl C3e = 5R(RT1)l/2 

#(T1),  
C4~ =- - -~  tl -/31)c4~, 

/~(T1) 
C2e- ~ (1-31)c2e 

(2.96) 

cla, c2~ ..... c~  are constants depending on fl = f l l  given by the asymptotic 
limit of the solutions of (2.89)-(2.91) for the following functions ~b(~): 

for 

for ~b(~) = (~1 ~2) Mo(r 

for ~b(~) = (~2 - I ~1--~2) Mo(~); 

lim •(x, r = c1~2Mo(~ ) (2.98) 
x ~ 3  

lim Z(x, ~)=(c4fl-~-c2fl [~12----~3) Mo(~) 
x ~  

(2.99) 

lim X( x ,~ ) =  c5~+ ~ Mo(~) 

(2.1oo) 

2)o(T1) 
C5~ 5R(RT,)I/2(1 +fil)cse (2.97) 
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As in Section 2.3, we get four scalar boundary conditions at x = 0 .  
Similar equations are derived at x = L. 

With fij = 0 these boundary conditions become exactety the conditions 
obtained in Section 2.3. 

The proof is achieved as in Sections 2.4, 2.5; Properties 2.5.1 and 2.5.2 
are also true in the case of Maxwell accommodation. 

Notice that the Maxwell condition (2.85) can be replaced by a more 
complex one. (7,1o) 

3. F O R M A L  D E R I V A T I O N  OF SLIP B O U N D A R Y  C O N D I T I O N S  

3.1. Introduct ion 

Let us consider the general problem of a flow around a body s (see 
Fig. 4). As was done by Grad, (17) we are going to derive formally the slip 
boundary conditions for the Navier-Stokes system from the kinetic boun- 
dary conditions at the wall. As in the previous section, this derivation relies 
on the asymptotic behavior of the linear half-space problem. 

The distribution of particles F~ satisfies the Boltzmann equation 

1 F ~.Oxr~--Q( +, F~) = 0, x f f R 3 - , Q ,  ~=(41, ~2, ~3)~R 3 (3.1) 

There are some boundary conditions at infinity and we assume 
Maxwell accommodation at the wall. Denoting by 012 = Z the boundary of 
s we have 

VxeZ, 3c~(x) eR/F+(x, 4)=fl(x) F~(x, R~) + [1 - f l ( x ) ]  a(x) M0. r(4), 

VX ~ ~ ,  f ~ .n(x) F~(x, 4) d~ = 0  

f 

I I 

~ p 

Fig. 4. Flow field. 

4 - n ( x ) > 0  (3.2) 

(3.3) 

KNUDSEN LAYER 
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where n(x) is the outward normal of f2 at point x ~ X, fl(x) is the Maxwell 
accommodation coefficient, and R~=~-2[~.n(x)]n(x) .  The wall is 
supposed to be at rest and at temperature T at point x~_r. (Thus the 
Maxwellian of the wall, M0, r, has no mean velocity). 

3.2. Chapman-Enskog Expansion 

As in the previous section, we first assume that outside a layer of 
thickness on the order of the mean free path, the Chapman-Enskog expan- 
sion is valid (see Section 4 for the discussion of the validity of this 
assumption). 

The Chapman-Enskog expansion reads [see (2.8)] 

FcE(X, ~)=M,,,n(~)Ep~-eh~(x, r (3.4) 

where p,, u~, T, depend on x. The Maxwellian is given by (2.9) and h,(x, ~) 
is written in terms of Sonine polynomials A~(() and B~.j(4) by 

h~(x, ~) = ~ b(T~, 14[) Oi, j(() ~x, uej 
l<~i,j<~3 

+ ~ a(T,,I4])Az(4)(RT~)~/ZSx~log(T~) 
i =  1,2,3 

=b(T~, [([)B(4):Vu~+a(T~, ]~I)(RTJ/2 A(4).V[log(T~)] (3.5) 

where ( i s  given by (2.11) and 

f412-5 
Ai(4) = 4 i  2 ' i =  1, 2, 3 (3.6) 

B,+(4) = 4,4j 1(12 
l<.i,j<~3 (3.7) 

a(T~, [4J) and b(T~, [4[) satisfy 

-2Q(M,,,r~, Mu,,ra(T~, [41)Ai(4))= A,(4)Mu,,r~, i=  1, 2, 3 (3.8) 

-2Q(Mu~,r~, Mu~,r~ b(T~, [41)Bi, j(4))=Bi.j(()Mu~,r~, 1 <<.i,j<<.3 (3.9) 

The stationary Navier-Stokes system is 

div(p~ u~) = 0 (3.10) 
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1 u~jO~ju~ +-- O.,(p~RT~) (3.11) 
j =  1,2,3 P~ 

1 { [ ]t =~-- ~ ~?~ #(T~) Q~u~i+c~y~j--~div(u~)~,j , i=1 ,2 ,3  
P~ j =  1,2,3 

2 1 u~.grad(T~) +~ T~ div(u~)-- e ~-~-~ {div[2(T.) grad(T~)] +0~} (3.12) 

with 
2 2 

tp~=#(T~)I~l<~3 (~?x~u~j+~?~ju~)2--~(divu~) ] (3.13) 

where the thermal conductivity 2(T,) and/t(T~) are still expressed in terms 
of a(T~, 0 and b(T,, 0 by (2.20), (2.21). As in Section 2.2, we make the 
approximation that a(T,, ~) and b(T,,() do not depend on ~. This 
assumption is only made to get simpler results (see Section 2.2). In par- 
ticular, the Chapman-Enskog expansion is then written in terms of 2(T~) 
and #(T~) instead of a(T,, ~) and b(T~, ~), 

22(T~) Ir 5RZ, 
+ ~ 5(RTA 2(~e-u~3 2RT~ ~x,T~ 

Let p,, u~, T~ satisfy the Navier-Stokes 
there exists a function W(x, ~) such that 

system (3.10)-(3,12); then 

~X E ~Q, 

and 

with 

ftp(~)W(x,~)d~=O for O(~)= 1, ~1, ~2, ~3, l~l 2 (3.14) 

--2Q(p~M~,T~, W) = S~ (3.1~) 

S~(x, 4) = 4 " ~(M,~,r~h~) + Q(Mu~,T~h~, Mu~,T~h~) 

i~ 1,2,3 j =  1,2,3 

2 1 I~-u~I2-3RL {div[2(T~)grad(L)] +0~} M~,,r~(x, ~) 
3 RT~ 2RT~ 
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(see ref.1 for the proof) and thus 

3" c3x(FcE + e 2W) 1 _  Q(FcE + e2W, FCE + eZw) 
g 

=e2[~.r W)-eQ(W, W)] (3.16) 

3.3. Derivation of the Slip Boundary Conditions for the 
Navier-Stokes Equations 

Now we derive the boundary conditions for the Navier-Stokes 
equations. As in Section 2, we add to the Chapman-Enskog expansion a 
kinetic boundary layer term in order to take into account the boundary 
conditions imposed on Ft. This kinetic layer term is going to be concen- 
trated at the boundary of f2. Let us first introduce the "boundary coor- 
dinates." As in ref. 3, we set 

F a = { x E  R 3 -Q/d(x,  S) <~6} 

Since Z is at least C 2, we may define a function a(x), for x E Fa (6 small 
enough), such that 

x = a(x) + d(x, X) n(a(x)), a(x) ~ X 

Fn(a(x)) denotes the outward unit normal to (2 at 
Moreover, choosing 6 small enough, we have 

d(x)  = d(x, S )  ~ C2(r~), a(x) e C:(&) 
We now solve for x ~ X: 

[~.n(x)]c?,zx(tl,~)-2Q(Mo, T~,Zx(rl,~))=O, 0 < r / <  +oo, 

o(x )  E a o  = s,] .  

~ R  3 

(3.17) 

)~x(O, 3)= fl(x) Z:'(O, R~) + [1 - f l ( x ) ]  co(x)Mo, v(~)-  FcE(x, ~), 

- n (x )<0  (3.18) 

f ~ .n(x) Zx(~l, 4) d~ = 0  (3.19) 

For x ~ Fa, we set 

z(x, ~)= z~(~ ( -~ ,  4) (3.20) 
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We add to the Chapman Enskog expansion this boundary layer term. As 
in Section 2, the boundary conditions for the Navier-Stokes system are 
derived from the fact that Z~(q, 4) should vanish as r/goes to infinity. 

We thus obtain for all x ~ S 

u~(x) . n = 0  (3.21) 

pc(x) u~(x) . "r = ~Cl~On(u~ . r) + eC6~3 ~ T~ (3.22) 

p~(x)[T~(x) - T] = eC2~,,(u~, n) + eC3~O,, T~ + eC7~ div[u~ - (u~. n)n] 

(3.23) 

where n is the outward unit normal to s at point x and r is any unit vector 
normal to n. We thus get four scalar equations. We have used the fact that 
u~- n = 0 implies that 0~(u~ �9 n) = 0. 

Moreover, as in Section 2, we obtain a relation which gives ~(x), 

O~(X) = pe(X) + s n) + eC5aO,, T~ + eCsa div [u~ - (u, .  n)n] (3.24) 

C~a, C2a ..... Csa are constants depending on T, fl(x) and are given by 

#(T) [ l + f l ( x ) ]  Clfl= ~ Clfl, 

22(T) [1 +fl(X)]r 
C3l~ = 5 R( R T) I/2 

#( T) 
C4fl = T  [1 - / ~ ( x ) ]  c4fl , 

22(T) [1 --fl(X)qs , 
C6~ = 5R(RT)I/2 

#(T)  
Csa-- ~ [ l - / ~ ( x ) ] c s a  

C2, = ~ -~  ~1 -/~(x)] c2~ 

22(T) 
C5l ~ - 5R( RT)I/2 [1 + fl(x)] c5~ 

C7a = ~ [1 - /3(x)]  c7~ 
/ X  

(3.25) 

(3.26) 

(3.27) 

clp, c2a,..., c8~ are constants depending on fl = fl(x) given by the asymptotic 
limit of the solutions of (2.89)-(2.91) with fll = fl(x) and for the following 
functions ~(~): 

for ~b(~)=(~lr162 lim Z(x,~)-~Cl~2Mo(~) (3.28) 
x~oo  

- - -  Mo(~); lim Z(x ,~)=  c4~+ - -  Mo(r 
x~oo  

(3.29) 
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for 

for 

lim Z(x, ~ ) = ( c s r  
x ~  

(3.30) 

lim Z(X, ~)=c6/~2Mo(~) (3.31) 
X ~ O Q  

lim X(x, 4) = c8~ + c 7 B - -  Mo(~) 

(3.32) 

These results extend those obtained in Section 2.6. We have found the 
usual slip boundary conditions/17'2~ Note that in most current problems, 
the tangential derivatives as well as the term C2~n(u~ .n) are small com- 
pared with the normal derivatives of other quantities/2~ If we neglect these 
terms, the slip boundary conditions (3.22)-(3.23) become 

pc(x) u~(x). ~ = ~Cl~n(u~" ~) (3.22') 

p~(x)[T~(x) -- T] = ~C3~c3~ T~ (3.23') 

Remark. In the previous derivation, we assumed that the wall's 
temperature was given. If this temperature is unknown, we have to add to 
the kinetic boundary conditions (3.2)-(3.3) another relation, for example, 
on the heat flux through the wall. Suppose we assume the following 
"adiabatic" condition at the kinetic level: 

f (~. n)l~12 F~(x, ~) dr = 0 (3.33) 

Then, the same kind of analysis can be made and we find the same slip 
boundary conditions with (3.23) being replaced by the usual adiabatic 
condition at the macroscopic level (16) 

~o(T~) 6. T~ + ~(T~)O.(lu~l 2/2) = 0 (3.34) 

Note that this equation does not use any asymptotic limit of the half-space 
problem. 

It could also be possible to take into account more complex relations 
than (3.33). 
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4. REMARKS ON THE VALIDITY OF THIS DERIVATION OF THE 
SLIP COEFFICIENTS 

4.1. Estimate of the Solution 

As in Section2, it is possible to obtain formally that if the 
Navier-Stokes solution satisfies the slip boundary conditions (3.31)-(3.33), 
then there exists a kinetic layer term )~(x, r concentrated near the wall 
such that the expansion 

F(x, r FcE(x, ~)+ ~2W(x, ~)+ 2(x, 4) 

satisfies the boundary conditions (3.2)-(3.3) at order e 2. We also formally 
get the following estimation: 

3 e f ( l + l ~ l  ) iM-1 ~.~?xF_IQ(F,F) .~3/2 

But because of the nonlinearity of the Boltzmann equation, it is not 
possible to conclude that the expansion built, F, gives an approximation of 
the Boltzmann solution at order e. This is due to the fact that using the 
Chapman-Enskog expansion, we approximate the Boltzmann equation 
and not its solution. 

4.2. Expansions Different from the Chapman-Enskog Theory 

The above analysis was based on the Chapman-Enskog theory and 
the Navier-Stokes equations. However, in some cases, this expansion does 
not seem to be right approximation at order e. 

Darrozes (11) obtained that near the body, in a region which he called 
the boundary later, the macroscopic quantities satisfy the Navier-Stokes 
equations corrected by an additional term. 

Studying the problem of thermal conduction around heated bodies, 
Wakabayashi and Sone (3~ proved that the Navier-Stokes equation for the 
velocity needs to be corrected by adding the same kind of term as in ref. 11. 
This is due to the fact that the mean velocity has no zeroth-order term in e. 

However, in both cases, the theory of the half-space problem is related 
to the study of the kinetic layer term and gives the slip boundary con- 
ditions for the unknown of the expansion valid outside the Knudsen layer. 
Sone gives the framework of this derivation using two different expansions 
(see refs. 27 and 28, for example). 
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4.3. The Case of the Chapman-Enskog Expansion 

In the Couette flow, the solutions of the Navier-Stokes system behave 
nicely when the Knudsen number tends to zero; Pc, u,, T~ converge 
uniformly in the computational domain g2 to a regular profile when e tends 
to zero. This is not true for general flow field. Indeed, the Reynolds number 
is defined by 

Re  = p VL/el t  

where V and L are a characteristic velocity and dimension of the flow (for 
example, the velocity at infinity and the length of one body). This Reynolds 
number goes to infinity when e goes to 0. It seems, however, that the 
hypotheses used in the above sections for the derivation of the slip boun- 
dary conditions remain physically relevant. We are now trying to justify 
this affirmation in the two following cases: (1) when the flow is everywhere 
laminar, (2) when the turbulence is fully developed. 

4.3.1. Laminar Regime. Near each body, there exists a laminar 
boundary layer the thickness of which is of order 

6 = L / ( R e )  1/2 

and thus is proportional to , , /7 (see ref. 20, for example). The thickness of 
the Knudsen layer is of some mean free paths and thus is proportional to e. 
So when e is small, the Knudsen layer is much thinner than the viscous 
boundary layer. The thickness of the Knudsen layer justifies the one-dimen- 
sional analysis of the kinetic boundary layer term (see the scaling made in 
the normal direction of the boundary in the above sections). A solution 
of the Navier-Stokes problem has significant variations over distances 
normal to the boundary of order 6 and so is approximately constant in the 
Knudsen layer, whose thickness is negligible compared to 6 when e is 
small. Moreover, the derivatives of fluid quantities are of order 1/6; so if 
we assume the slip boundary condition found in the above sections, the 
velocity and the temperature of the Navier-Stokes solution in the Knudsen 
layer are close to those of the wall. This proves that the linear analysis of 
the kinetic layer term was indeed a good approach. Notice that outside the 
Knudsen layer and inside the viscous layer, the Chapman-Enskog expan- 
sion is not obviously false despite the rapid variation of the fluid quantities 
because they vary on a distance much longer than the mean free path. 

4.3.2. Fully Developed Turbulence. When ~ goes to zero, the 
Reynolds number goes to infinity and the flow regime becomes turbulent. 
However, we first examined the laminar case because the slip boundary 
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conditions are usually used when the Knudsen number is small enough for 
the Navier-Stokes system to be valid but not too small to have slip effects 
(see the computation of flow using Navier-Stokes with slip boundary 
conditions done by Rostand(26)). 

When the Reynolds number is large, the turbulence is fully developed~ 
We assume that the Mach number is small and, therefore, that the incom- 
pressible Navier-Stokes system is a good approximation. In the case of 
fully developed turbulence, the macroscopic quantities vary over a distance 
much smaller than L. Let us look at the effect of fully developed turbulence 
on the derivation of slip boundary conditions. Frisch ~13~ shows how the 
breakdown of the hydrodynamic approximation seems to be unlike. We 
first recall some arguments developed in ref. 13. Let 6 be the smallest scale 
of the flow. According to Kolmogorov, ~2t) 

6 ~ L .  ( R e )  3/4 

Thus, 6 behaves like •3/4 when e is small. Since the mean free path l is 
proportional to e, it is much larger than 6 (except if the Kolmogorov 
exponential law is far from reality) (see ref. 13 for more precise 
asumptions). This proves that at the scale of the mean free path l, the flow 
remains laminar. So the effects of fully developed turbulence do not seem to 
break down the derivation of the slip boundary conditions. 

Note that, according to the above statements, when e is very small, 
the slip boundary conditions are close '~ to the usual no-slip boundary 
conditions. 
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